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ABSTRACT
We propose a new model for the initiation of a solar coronal mass ejection (CME). The model agrees

with two properties of CMEs and eruptive Ñares that have proved to be very difficult to explain with
previous models : (1) very low-lying magnetic Ðeld lines, down to the photospheric neutral line, can open
toward inÐnity during an eruption ; and (2) the eruption is driven solely by magnetic free energy stored
in a closed, sheared arcade. Consequently, the magnetic energy of the closed state is well above that of
the posteruption open state. The key new feature of our model is that CMEs occur in multipolar topol-
ogies in which reconnection between a sheared arcade and neighboring Ñux systems triggers the erup-
tion. In this ““ magnetic breakout ÏÏ model, reconnection removes the unsheared Ðeld above the low-lying,
sheared core Ñux near the neutral line, thereby allowing this core Ñux to burst open. We present numeri-
cal simulations that demonstrate our model can account for the energy requirements for CMEs. We
discuss the implication of the model for CME/Ñare prediction.
Subject headings : Sun: corona È Sun: Ñares È Sun: particle emission

1. INTRODUCTION

It is now widely recognized that coronal mass ejections
(CMEs) are the most important manifestation of solar
activity that drives the space weather near Earth (Gosling
1993, 1994). CMEs are huge ejected plasmoids, often with
masses g and energies ergs, and frequentlyZ1016 Z1032
subtending more than 60¡ in position angle (see, e.g.,
Howard et al. 1985 ; Hundhausen 1997). Recently, certain
LASCO coronagraph observations from SOHO have been
interpreted as evidence that CMEs can be global dis-
ruptions completely circling the Sun (Brueckner 1996 ;
Howard et al. 1997). In addition to being the primary cause
of major geomagnetic disturbances, CMEs are also a funda-
mental mechanism by which the large-scale corona sheds
Ñux and, hence, may play a central role in the solar cycle.
Therefore, an understanding of the mechanism for CME
initiation has long been a primary goal of solar physics
theory.

There are a number of basic observational constraints
that any theoretical model for CME initiation must satisfy.
Since the plasma beta in the nonÑaring corona is typically
small, b D 10~2, gas pressure alone cannot be the driver.
Early models for CMEs proposed that the eruption is
driven by explosive Ñare heating, but it is now known that
many CMEs occur with little detectable heating, especially
those originating from high-latitude quiet regions. It has
also been proposed that CMEs may be due to magnetic
buoyancy e†ects (see, e.g., Low 1994 ; Wu, Gou, & Wang
1995 ; Wolfson & Dlamini 1997), but this would imply
CMEs should be associated with large masses of falling
material. During prominence eruptions, material can some-
times be observed to fall back onto the chromosphere, but
CMEs often occur with negligible prominence activation
and very little evidence for downward moving plasma.

Coronagraph observations usually show all of the CME
plasma moving outward, in which case buoyancy is unlikely
to be the driver. These considerations have led most investi-
gators to conclude that the energy for the eruption must be
stored in the magnetic Ðeld.

The general topology of a CME appears to be that of an
erupting arcade overlying a photospheric neutral line (see,
e.g., Martin & McAllister 1997). The magnetic Ðeld near
CME neutral lines is observed to run almost parallel to the
line, which indicates that the Ðeld is far from potential. This
magnetic stress is commonly referred to as ““ shear ÏÏ and is
most likely the source of energy for the eruption. Note that
the actual type of arcade can range from low-lying kilo-
gauss Ðelds associated with Ðlament eruptions and Ñares in
active regions to weak high-latitude Ðelds associated with
polar crown Ðlaments.

Since many CMEs are accompanied by the ejection of
prominences or Ðlaments, it appears that the innermost Ñux
of the erupting arcade opens out to the solar wind. The
question of whether all the arcade Ñux opens or whether
some inner Ðeld is left closed is a critical one for theoretical
models (Aly 1991 ; Sturrock 1991 ; Wolfson & Low 1992 ;

& Linker 1994). All of the Ðeld above the occultingMikic�
disk of present coronagraphs (º1.1 is observed toR

_
)

open, but there may remain a considerable amount of
closed arcade Ñux below this height. Since low-lying active-
region Ðlaments sitting on the chromospheric neutral line
are observed to be ejected, we believe that for some erup-
tions all of the arcade Ñux down to the chromospheric
neutral line must open. Others have argued, however, that
the Ðeld reconnects back down to a closed state just as the
Ðlament begins to lift, so that the innermost Ñux near the
chromosphere never actually opens. This issue remains to
be resolved observationally.
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As will be discussed in detail below, requiring all the
arcade Ñux to open imposes an extreme constraint on theo-
ries for CMEs. It is much easier to explain the eruption if a
signiÐcant fraction of the Ñux remains closed. The key
feature of the model presented in this paper is that it can
produce an eruption in which even the innermost arcade
Ñux at the photospheric neutral line can open to inÐnity
and, yet, the eruption is purely magnetically driven.

Another observational constraint on theoretical models
is that the stressing of the coronal magnetic Ðeld is slow
compared to characteristic timescales in the corona. Photo-
spheric driving velocities are typically of order 1 km s~1,
whereas characteristic coronal speeds are of order several
hundred km s~1 for sound waves and several thousand km
s~1 for motions. Therefore, to a good approx-Alfve� nic
imation the energy for a CME is pumped into the corona
quasi-statically.

This quasi-static evolution of the corona is controlled by
two processes : the displacement of magnetic footpoints by
photospheric and subphotospheric Ñows, and the emer-
gence and submergence of magnetic Ñux through the photo-
sphere. It is not clear which process is most important for
producing the shear, or whether both play signiÐcant roles
depending on the type of solar region. Many CMEs orig-
inate in coronal helmet streamers, which often swell for
several days before the eruption (Hundhausen 1997). Such
swelling often is attributed to shearing of the magnetic foot-
points (see, e.g., Klimchuk 1990), although the emergence of
new Ñux also could produce this e†ect. For the model pro-
posed in this paper it is irrelevant whether the shear is due
to photospheric Ñows or to Ñux emergence. The key
requirement is that the stressing is slow. In the simulations
presented below, boundary Ñows were used to generate the
shear, but we expect the same results if shear emergence is
used. The major advantage to our boundary conditions is
that they are straightforward to understand and completely
physical. As emphasized by a number of authors (see, e.g.,
Aly 1984 ; Klimchuk & Sturrock 1989 ; Wolfson & Verma
1991), a low-b system like the corona is highly sensitive to
boundary conditions at the base, and the application of
inappropriate conditions can easily lead to erroneous con-
clusions about the equilibrium of the coronal Ðeld. By
driving the shear with slow footpoint motions we are
assured that any eruption that occurs is physically valid and
not an artifact of peculiar boundary conditions. Note that
the boundary conditions we use are exactly the ones used
by Aly (1984), Sturrock (1989), and others in deriving the
energy limit.

The Ðnal constraint on CME theories is that the corona
has no upper boundary. Field lines are allowed to expand
to inÐnity if it is energetically favorable for them to do so.
This seems like a trivially obvious statement, but it has
profound implications for the possible evolution of the
magnetic Ðeld.

Taken together, the constraints of an open corona and of
quasi-static stressing make it very difficult to understand
how violent eruptions can occur on the Sun. Intuitively one
would expect the Ðeld to respond to slow photospheric
driving by simply expanding outward to inÐnity rather than
by undergoing a violent eruption. This intuition is con-
Ðrmed by a number of numerical simulations that have
shown that sheared 2.5-dimensional force-free bipolar
arcades in Cartesian geometry do not erupt as long as
physically appropriate boundary conditions are assumed

(Klimchuk & Sturrock 1989 ; Finn & Chen 1990 ; Wolfson
& Verma 1991). There is also no evidence for eruption in
2.5-dimensional bipolar arcades in spherical geometry
(Roumeliotis, Sturrock, & Antiochos 1994). The sheared
Ðeld simply expands outward, which pushes any overlying
Ñux outward as well and approaches the open state asymp-
totically with increasing shear (Sturrock, Roumeliotis, &
Antiochos 1995). Eruptions can be obtained if signiÐcant
resistivity is present (Biskamp & Welter 1989 ; Steinolfson
1991 ; Inhester, Birn, & Hesse 1992 ; & Linker 1994),Mikic�
but contrary to observations the Ðeld opens only partially
and disconnected plasmoids form in the corona.

The basic problem encountered by all of the numerical
models to date is that, irrespective of the magnitude of the
shear, the closed conÐgurations that the models compute
contain less magnetic energy than the fully open state. In
fact, Aly (1984) and Sturrock (1991) have claimed, on the
basis of mathematical arguments, that the maximum energy
state of any force-free Ðeld is the fully open Ðeld (Aly 1984,
1991 ; Sturrock 1991). Although this claim has not been
completely or rigorously proved, it is in agreement with
every numerical simulation (including the ones in this
paper), and hence seems very likely to be correct. In order to
obtain a CME, however, we need more energy in the
preeruption sheared state than in the Ðnal open state, since
energy is needed not only to open the Ðeld but also to
accelerate and lift the plasma against gravity. The energy
going into the plasma can be very large, of order 1032 ergs
or more ; hence, the energy in the preeruption Ðeld must be
well above the energy of the fully open stateÈa result which
appears to be in direct conÑict with the Aly-Sturrock limit.

2. THE THEORETICAL MODEL

We propose in this paper a CME model that can resolve
the apparent contradiction between the Aly-Sturrock
energy limit and CME observations. Let us Ðrst clarify why
the Aly-Sturrock model, in fact, requires that previous
models be in conÑict with observations. Since a number of
observations indicate that CMEs can occur over extremely
long neutral lines, sometimes apparently circling the entire
Sun (Brueckner 1996), and since most CME and/or Ñare
associated activity appears to occur along a single neutral
line on the photosphere, models for CMEs and eruptive
Ñares generally assume a 2.5-dimensional bipolar magnetic
geometry with either translational or azimuthal symmetry.
Hence, the magnetic system consists of a single coronal
arcade (see, e.g., Roumeliotis et al. 1994 ; & LinkerMikic�
1994).

The important point is that, for a single arcade system,
the observational requirement that the innermost Ñux near
the neutral line open up requires that all the Ñux in the
system open ; but this is forbidden by the Aly-Sturrock limit,
at least for a purely magnetically driven eruption, because
no sheared Ðeld state can have enough energy to open up all
the Ñux. The only way to obtain an eruption in these models
is by the formation of closed plasmoids in the corona so
that some of the Ñux is disconnected from the photosphere.
The Aly-Sturrock arguments do not apply to topologies
with disconnected Ñux, but in the real three-dimensional
corona, reconnection will not result in the formation of
disconnected Ñux from the photosphere. In three-
dimensions, the Aly-Sturrock energy limit will apply and is
likely to suppress any eruption of a single arcade even in the
presence of reconnection, as in the so-called tether-cutting
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model (see, e.g., Sturrock 1989 ; Moore & Roumeliotis
1992). Furthermore, it is very difficult to see how three-
dimensional reconnection in a single arcade can lead to the
opening of the innermost Ñux near the neutral line. We
conclude that any single arcade model is doomed to failure.

Let us consider instead a multiÑux system such as the
Ðeld shown in Figure 1a. In this case we have three neutral
lines on the photosphere and four distinct Ñux systems : a
central arcade straddling the equator (blue Ðeld lines), two
arcades associated with the neutral lines at ^45¡ (green
Ðeld lines), and a polar Ñux system overlying the three
arcades (red lines). Note that there are two separatrix sur-
faces that deÐne the boundaries between the various Ñux
systems, and a null point on the equatorial plane at the
intersection of the separatrices.

Suppose that as a result of large shear concentrated at the
equatorial neutral line a CME occurs and the innermost
Ñux of the central arcade opens up. The di†erence now is
that even if the system is strictly 2.5-dimensional, the inner-
most Ñux can open down to the neutral line at the equator

without opening all the Ñux in the system and without the
formation of disconnected Ñux. Clearly there is no reason
for a shear that occurs only near the equator to a†ect the
high-latitude (green) arcades ; therefore, their Ñux should
remain closed throughout the evolution. This is not signiÐ-
cant energetically, however, since the green arcades are not
expected to play an important role in constraining the erup-
tion. The key point is that much of the Ñux of the central
(blue) and overlying (red) systems also can remain closed
during eruption. If reconnection between red and blue Ðeld
lines occurs at the null point, this reconnection will result in
the transfer of Ñux from the blue and red systems to the side
(green) arcades. Such a Ñux transfer allows unsheared blue
and red Ñux to get out of the way of the erupting sheared
core Ñux, but to still remain closed. Note that this process is
possible only in a multiÑux system. In a single arcade
system all the unsheared Ñux is forced to open because it
basically has nowhere else to go.

Flux transfer in a multipolar system also allows us to
understand how a large energy excess sufficient to power a

FIG. 1a FIG. 1b

FIG. 1c FIG. 1d

FIG. 1.È(a) Initial potential magnetic Ðeld. The Ðeld is symmetric about the axis of rotation and the equator, so only one quadrant is shown. The
photospheric boundary surface is indicated by the light gray grid. Magnetic Ðeld lines are colored (red, green, or blue) according to their Ñux system. Two
types of blue Ðeld lines are indicated, higher lying light blue unsheared Ðeld and low-lying dark blue Ðeld that is sheared later in the simulation. (b) Force-free
Ðeld after a shear of n/8. The Ðeld lines shown correspond to those in (a) and are traced from the same footpoint position on the photosphere as in (a). (c) As
above, but for a shear of 3n/8. (d) As above, but for a shear of n/2.
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CME can be built up in a closed sheared Ðeld and yet be
compatible with the Aly-Sturrock limit. The key point is
that the ““ fully ÏÏ open state is not unique in a multipolar
system. To illustrate, let denote the energy of that stateEmaxin which all the Ñux initially in the central and overlying
arcades (blue and red) opens, but the green Ñux remain
closed. When the shear is conÐned only to the arcade at the
equator, is the appropriate energy limit rather than theEmaxlarger energy corresponding to all the Ñux, including green,
being open. Note that the state with energy can beEmaxreached by a purely ideal evolution in which the sheared
core Ðeld expands slowly outward pushing all the overlying
Ñux out to inÐnity, with no reconnection at the null. The
side Ñux is distorted by the expanding Ðeld, but it does not
open. The Ðnal state has a current sheet at the equator
reaching down to the photosphere and a current sheet at
the top of each side arcade, so that each green side arcade
becomes a helmet streamer.

We expect that no sheared closed conÐguration can have
energy above so if it were the only state accessibleEmax,there would be no eruption, just as in the single arcade case.
If we allow reconnection at the null, however, then other
open states with lower energy become accessible. For
example, if the shear is conÐned to a small latitudinal band
^# near the equator and well inside the separatrix of the
blue arcade, then consider the state in which the Ñux inside
^# opens while as much as possible of the remaining Ñux
in the system is closed. (It may not be possible for all the
unsheared blue Ñux to be closed because there may not be
sufficient red Ñux for the blue to reconnect with.) Let this
state, which has the minimal amount of open Ñux, have
energy The open state looks very similar to theEmin. Eminstate except that the distribution of Ñux between theEmax,open and closed systems is di†erent. We can consider Emaxand to be the maximally and minimally open states,Eminrespectively. The important point is that the magnitude of

can be much less than because the state mayEmin Emax, Emincontain much less open Ðeld.
We propose that the energy for CMEs and eruptive Ñares

is due to this di†erence between and If the recon-Emax Emin.nection at the null is slow, then the energy in the sheared
closed conÐguration can rise well above It can neverEmin.go above but depending on the ratio of sheared Ñux toEmax,unsheared Ñux in the central arcade the energy of the
sheared closed Ðeld could be much larger than so thereEmin,could be a large amount of energy available for eruption.

In this model the unsheared blue and red Ñuxes act to
conÐne the expansion of the sheared core Ðeld. We expect
that a CME (or eruptive Ñare) occurs when reconnection at
the null weakens this conÐnement sufficiently so that the
sheared Ðeld starts to expand outward rapidly, which drives
reconnection ever faster at the null and ““ breaking out ÏÏ to
inÐnity. Note that this magnetic ““ breakout ÏÏ model natu-
rally implies explosive-type behavior.

A crucial issue for our model is the rate of reconnection at
the null. If this rate is fast, faster than the rate at which the
system is being sheared (either by photospheric Ñows or Ñux
emergence), then the magnetic energy always stays below

and no eruption can occur. We expect, however, thatEminthe reconnection will be slow at Ðrst because the shear
occurs only far from the separatrices. Under these circum-
stances a quasi-static evolution should be possible so that
only weak currents develop near the null and separatrices. If
so, there should be negligible reconnection, and the energy

in the system may rise well above In the next sectionEmin.we present numerical simulations that conÐrm this hypoth-
esis.

3. NUMERICAL SIMULATIONS

3.1. Force-free Field Calculations
In order to test the free energy issue discussed above, we

calculated the energy of a sheared multipolar Ðeld using two
procedures. First, we calculated the energy by deter-Eminmining the minimum-energy force-free Ðeld for a given dis-
tribution of shear at the photosphere. The use of a force-free
calculation needs some clariÐcation. Since the Ðeld has a
null point, the true evolution cannot be force-free because
any Ðnite gas pressure will dominate near the null ; hence
the force-free simulations do not determine a physical evo-
lution for the system. We use the force-free code only as a
convenient method for calculating the equilibrium state
corresponding to the minimum magnetic energy for a given
shear on the Ðeld and in the limit of vanishing gas pressure.

The important feature of the force-free calculations is that
they include the e†ects of reconnection. The numerical algo-
rithm that the code uses to solve the force-free equations is
basically iterative relaxation (Yang, Sturrock, & Antiochos
1986). Given the positions of all the Ðeld line footpoints on
the boundary, and some initial guess at the solution in the
interior, the code iterates the solution monotonically
toward the minimum energy state ; however, the code uses a
multigrid procedure so that the relaxation is Ðrst performed
on very coarse grids with poor resolution and, consequent-
ly, high numerical di†usion. This means that the iteration
process allows for reconnection, in that Ñux will transfer
rapidly from one Ñux system to the other as long as this
transfer is consistent with the boundary conditions and
results in a decrease in the magnetic energy. Note that there
is no real di†usion in the system, however, because there is
no slippage of the footpoints at the solar surface. The shear
is strictly enforced by the boundary conditions, but the Ðeld
is free to reconnect at will across the null in order to reach
its absolute minimum energy state.

The code solves the force-free equations

($ Â B) Â B \ 0 (1)

using an Euler potential representation for the Ðeld (Yang et
al. 1986). Azimuthal symmetry is assumed, so that

B \ $a(r, h) Â $[/[ c(r, h)] . (2)

The advantage of the Euler representation is that the photo-
spheric shear is speciÐed directly by the value of c at the
photosphere r \ 1. By Ðxing c there, we Ðx the shear irre-
spective of how the Ðeld changes in the interior.

For the initial, unstressed (potential) Ðeld (Fig. 1a), we
assumed a multipolar Ñux distribution given by

a(r, h)\ sin2 h
r

] (3] 5 cos 2h) sin2 h
2r3 . (3)

The Ðeld consists of a dipolar component that dominates at
large r, and an octopolar component at the surface. In the
middle corona, r D 2, the Ðeld appears quadrupolar with an
X-type null point on the equatorial plane. Due to the 2.5-
dimensional symmetry of our system, the normal Ñux at the
photosphere is unchanged by the shear, and hence the value
of a at the lower boundary is constant : a(1, h)\ (5/4)
sin2 2h. Note that the Ñux maximum a \ 1.25 occurs at the
neutral line at h \ n/4.
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From equations (2) and (3) we Ðnd that

B
r
(r, h)\ 1

r2 sin h
La
Lh

, (4)

so that the normal Ðeld at the photosphere is given by
which implies that there areB

r
(1, h)\ 10 cos h cos 2h,

three neutral lines located at h \ n/4, n/2, and 3n/4. The
position of the null point on the equatorial plane can be
determined from the requirement that vanishes there.BhFrom equations (2) and (3) we Ðnd that Bh(r, n/2) \ r~3

and consequently the null is located at r \ 31@2.[ 3r~5,
The value of the Ñux function at the null is a(31@2, n/2)
\ 2/[3] 31@2]\ 0.385, from which we Ðnd that the
separatrices intersect the northern hemisphere at
h \ 0.2941 and 1.277. Note that we have chosen the form of
a so that positive Ñux in each hemisphere exactly balances
the negative Ñux there, while a vanishes at the poles and
equator. This means that there is exactly enough red Ñux to
reconnect with all of the blue Ñux, if such reconnection were
energetically favored.

The imposed shear is assumed to be antisymmetric about
the equator and conÐned to a small latitudinal band there ;
i.e.,

c(1, h)\q
r
s

sC(t2[ #2)2 sin t , for t \ # ,
0 , for tº # ,

(5)

where t\ (n/2 [ h) is the solar latitude, # \ n/15 is the
assumed latitudinal extent of the shear layer, and
C\ 8.68252] 103 is a normalization constant chosen so
that c\ s at the latitude of maximum shear, t\ 0.094. The
form of c(1, h)/s is shown in Figure 2. Note that the bound-
ary of the shear layer occurs at h \ 13n/30, where
a \ 0.207, whereas the value of a at the boundary of the
blue arcade (the separatrix) is 0.385. Hence, only about half
the Ñux of the central arcade is sheared.

We solved the force-free equations above in the domain
(1¹ r ¹ 100, 0 ¹ h ¹ n/2) using a 512 ] 512 nonuniform
grid. Due to the symmetry of the system about the equato-
rial plane, only one hemisphere needed to be calculated.
The grid was selected to enhance the resolution near the
solar surface and near the equator ; in particular, the grid
points were spaced uniformly in x and y, where x \ ln r and
y \ exp (6h/n). The boundary conditions at the pole, h \ 0,
and the equator, h \ n/2, were set by symmetry. At the
inner boundary r \ 1, the shear proÐle c(1, h) was speciÐed
using the form above, and the Ñux distribution a(1, h) was

FIG. 2.ÈNormalized shear proÐle as a function of colatitude

Ðxed to its initial value. At the outer boundary r \ 100 both
a(100, h) and c(100, h) were Ðxed to their initial value.
This meant that there was no shear at the outer boundary,
c(100, h)\ 0, which is a good assumption because the
sheared Ðeld lines were initially very far from the outer
boundary. However, Ðxing a at the outer boundary means
that no Ñux is allowed to exit the system. This is not valid
since as the inner core Ðeld expands, it will push on the
outer Ðeld lines so that even the Ñux very far from the solar
surface will move outward. The amount of Ñux at r \ 100 is
very small, however, and the energy associated with this Ñux
is so small that the outer boundary conditions have a negli-
gible e†ect on the structure and energetics of the system,
even for shears much larger than the values we discuss
below.

The results of the force-free Ðeld calculation for three
shear values, s \ n/8, n/4, and n/2, are shown in Figures 1b,
1c, and 1d. The Ðeld lines in all these Ðgures were traced
beginning at exactly the same footpoint positions as in
Figure 1a, in which there are four footpoints in the red
system, three green footpoints, three light blue (unsheared)
footpoints, and three dark blue (sheared) footpoints. The
color of the Ðeld lines in Figures 1bÈ1d corresponds to the
initial color of the footpoints, irrespective of whether recon-
nection has occurred. Even for a low shear of n/8 it is
evident that some reconnection has taken place since two of
the red and two of the light blue Ðeld lines have now joined
the green system. It should be noted that although the
maximum shear is n/8, the average over the shear layer is
only about half this value. For s \ n/2, almost all the blue
Ñux has reconnected with the red and has expanded
outward far from its initial position. Therefore, we expect
the energy of the n/2 sheared state to be close to that of the
open state, In fact, we have continued the force-freeEmin.calculations to shears twice this value and found almost no
increase in the magnetic energy. It can be seen in Figure 3
that the energy of the force-free Ðeld appears to saturate at a
maximum value of approximately 6% above the initial
potential Ðeld energy ; i.e., Note that theEmin\ 1.06Epot.6% Ðgure refers to the total energy of the initial Ðeld, which
includes all the unsheared arcades. If we consider only the

FIG. 3.ÈMagnetic-free energy as a function of shear for the force-free
Ðeld solution (lower line) and the MHD solution (upper line). The shear is in
units of n and the free energy is expressed as percentage of the initial
potential Ðeld energy.



490 ANTIOCHOS, DEVORE, & KLIMCHUK Vol. 510

energy initially in the central blue arcade, the relative
energy increase is over 1 order of magnitude larger.

An issue that requires clariÐcation is how the force-free
calculations determine a sequence of equilibrium states
leading to the state The code Ðnds the absoluteEmin.minimum energy state for a given shear at the base,
assuming that reconnection occurs freely at the null. For
small shear only the unsheared light blue Ðeld lines recon-
nect, as in Figure 1b, but as the shear increases the outer-
most sheared Ðeld line eventually reaches the null. It is
important to emphasize that the sheared Ðeld lines (dark
blue lines) also reconnect freely. This is evident from Figures
1c and 1d. The dark blue lines have reconnected and now
have one of their footpoints near the pole. Although these
lines have reconnected, they have not lost their shear. The
footpoint displacement c is strictly maintained at the photo-
sphere by the boundary conditions. This is also physically
valid. As long as the system has small resistivity, the recon-
nection will occur in a region of negligible volume (a current
sheet), and the Ðeld reconnects with negligible di†usion. In
this case the reconnected Ðeld lines maintain their footpoint
displacement (Karpen, Antiochos, & DeVore 1996). Note
also that all Ðeld lines with a footpoint in the shear zone,
even if the Ðeld line has joined the green system, continue to
expand outward toward the open conÐguration as the shear
increases. In the limit of inÐnite shear, the Ðeld achieves the
open state in which all of the Ðeld lines in the shearEminzone (by now they have all become part of the green systems
because of reconnection) and any leftover red Ðeld lines
open.

3.2. MHD Calculations
The results of our force-free calculations determined the

magnitude of The key question is whether a shearedEmin.coronal Ðeld will evolve to a state with energy signiÐcantly
above this value, or whether reconnection at the null keeps
the energy below In order to calculate the physicalEmin.evolution for the Ðeld, we performed a fully time-dependent
simulation using a 2.5-dimensional ideal MHD code in
spherical coordinates developed by DeVore (1991). The
code uses a multidimensional Ñux-corrected transport
(FCT) algorithm for transporting the conserved quantities,
and it maintains the divergence-free condition on the mag-
netic Ðeld to machine accuracy.

The code solves the standard ideal MHD equations
appropriate for the solar corona :

Lo
Lt

] $ Æ (o¿)\ 0 , (6)

L
Lt

(o¿)] $ Æ (o¿¿)] $P\ 1
4n

($ Â B) Â B [ og
_

R
_
2 r

r3 ,
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LU
Lt

] $ Æ (U¿)] P$ Æ ¿\ 0 , (8)

and

LB
Lt

\ $ Â (¿ Â B) , (9)

where o is mass density, is velocity, P is gas pressure, B is¿
magnetic induction, is the solar surface gravityg

_(2.75] 104 cm s~2), is the solar radius (7.0 ] 1010 cm),R
_and U is the internal energy (U\ 3P/2).

We use exactly the same initial magnetic Ðeld and shear
proÐle as in the force-free calculations, but now we must
also specify the initial plasma distribution. The plasma was
taken to be in hydrostatic equilibrium, with initial tem-
perature and density given by

T (r) \ 2 ] 106
r7 K and n(r) \ 2 ] 108

r
cm~3 . (10)

Since the Ðeld drops o† rapidly with radius, these forms for
T and n were chosen in order to keep the plasma b 4
8nP/B2 from becoming too large at large distances from the
surface. Although the values of b in our simulation are not
as low as those in the real corona, they are deÐnitely less
than unity near the bottom boundary. The values for T and
n above imply an initial plasma pressure at the solar surface
of 5.5 ] 10~2 ergs cm~3. The Ðeld strength at the surface
ranges from a value of at the pole, so thatB\ B

r
\ 10

b \ 0.014 there, to at the equator, whereB\ Bh\ [2
b \ 0.35. Once we begin shearing, the value of b drops
much lower. Of course the system is always high beta near
the null point, so it deviates substantially from the force-free
case there.

We use the same nonuniform grid as in the force-free
calculations, except that the outer boundary is placed at
r \ 10 rather than at r \ 100. As will be shown below, the
Ðeld does not expand outward as much in the MHD case,
so there is less inÑuence from the outer boundary. Further-
more, we assume open boundary conditions there, so that
Ñux and mass are free to move past the outer boundary. The
use of a smaller domain allows us to have higher spatial
resolution, which turns out to be the limiting factor in the
MHD simulations. The boundary conditions at the polar
axis and the equatorial plane are determined, as before, by
symmetry considerations. At the inner boundary, the
photosphere, we assume a line-tied impenetrable surface
with an imposed azimuthal velocity given by the shear
proÐle above and with a sinusoidal temporal proÐle.

A critical parameter is the magnetic Reynolds number
Our fully two-dimensional FCT transport algorithmR

M
.

uses higher order di†erencing so that, as in all Ðnite-
di†erence codes, the e†ective Reynolds number is quite
high : as long as the magnetic and plasmaR

M
? 10,000

structure is numerically well resolved. Of course, these
values for are still small compared to classical solarR

Mvalues. If structure develops on the scale of the grid spacing,
then the e†ective drops to become of order the numberR

Mof grid points, D500. We conclude, therefore, that our simu-
lation only overestimates (greatly) the true rate of reconnec-
tion that would occur on the Sun.

We drove the system with a sequence of shear motions
applied at the photospheric boundary. Each shear phase
had a sinusoidal time proÐle with a period of 25,000 s and a
maximum footpoint displacement of n/8. For this period
and amplitude the maximum shear velocity at the photo-
sphere is approximately 10 km s~1, whereas the Alfve� n
speed is approximately 500 km s~1 in the model corona.
Hence the evolution was nearly quasi-static until the very
end of the simulation when large velocities appeared near
the null because of reconnection.

The resulting Ðeld lines at the end of the Ðrst shear phase
are shown in Figure 4a. These Ðeld lines are traced from
exactly the same footpoint positions as the lines in Figure
1a. We note that the Ðeld lines in Figure 4a have pushed
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FIG. 4a FIG. 4b

FIG. 4c FIG. 4d

FIG. 4.ÈMHD solution after a shear of (a) n/8, (b) n/4 , (c) 3n/8, and (d) n/2 . The Ðeld lines shown are the same as those in Fig. 1.

outward as a result of the shear, but unlike the correspond-
ing force-free case (Fig. 1b) there is no evidence for recon-
nection yet in the MHD results. The MHD system does
appear to have achieved a true equilibrium. We let the
system relax for an additional 50,000 s, and the resulting
Ðeld was virtually indistinguishable from that in Figure 4a.
We conclude that there are at least two magnetostatic equi-
libria that the system can achieve for a given shear. One is
the force-free state of Figure 1b, in which the Ðeld outside
the sheared region is current-free and the null is a true
X-point with right angle separatrix lines. This state has the
lowest energy, but it can only be reached with reconnection.
Another solution is the MHD state of Figure 4a in which no
reconnection occurs at the null. In this case the unsheared
Ðeld cannot be current-free so that gas pressure, and
perhaps gravity, must play a role in the force balance. We
can infer from Figure 4a that the separatrix surfaces are not
quite perpendicular to each other, which indicates there is
some weak current near the null. This current, however, is
less than 1% of the maximum current in the shear region.

Figures 4b, 4c, and 4d show the results of the MHD
simulation after three more shear phases. The solution in
Figure 4c corresponds to a total maximum shear in each
hemisphere of 3n/8. Although no noticeable reconnection

has occurred, the Ðeld at the null becomes progressively
distorted from a right angle X-type neutral point. The
reason for this is straightforward. To relieve their stress,
blue Ðeld lines expand outward toward an open conÐgu-
ration, which push the overlying red lines outward as well.
The green Ðeld lines, on the other hand, are unstressed and
have no interest in being dragged out to inÐnity, so they
simply move aside by pulling away from the neutral point.
Consequently the separatrix lines become more and more
oblique as blue and red Ñux push toward each other while
green pulls away.

We can gain some insight into the evolution of the struc-
ture near the null point by considering a simple analytic
model. Curvature e†ects can be neglected sufficiently near
the null, and a locally Cartesian coordinate system can be
used. Let the origin of this coordinate system be at the null,
let the x-axis be horizontal (parallel to the equatorial plane),
and let the y-axis be vertical. If the Ðeld near the null has no
shear, then an appropriate form for the potential a (see eq.
[2]) is

a(x, y)\ B0
Ay2
2l

y
[ x2

2l
x

B
, (11)
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where and are two constants that determine the scale ofl
x

l
ythe gradients in x and y, respectively. The separatrix lines

are given by a \ 0 ; consequently, if these lines arel
x
\ l

y
,

perpendicular to each other and, as we show below, the
current vanishes. From this form for a we derive a magnetic
Ðeld,

B \ B0
Ay
l
y

xü ] x
l
x

yü
B

, (12)

and an electric current density,

J \ B0
l
y
[ l

x
l
x
l
y

zü . (13)

Note that if the current vanishes and we recover thel
x
\ l

y
,

right angle X-type null point of a potential Ðeld. If the scales
are not equal, there is a Ðnite current in the system that
implies a Ðnite Lorentz force given by

J Â B \ B02
l
y
[ l

x
l
x
l
y

A
[ x

l
x

xü ] y
l
y

yü
B

. (14)

Assuming that gravity is negligible, the Lorentz force must
be balanced by the pressure gradient, which implies that the
pressure is given by

P\ P0] B02
4n

l
y
[ l

x
l
x
l
y

A
[ x2

2l
x
] y2

2l
y

B
, (15)

where is the gas pressure at the null.P0Initially the Ðeld is current-free and but as the Ðeldl
x
\ l

y
,

is distorted by the outward expanding blue Ñux the angle
formed by the separatrix surfaces becomes more and more
acute so that becomes smaller than In the limitl

x
l
y
. l

x
> l

y
,

equations (12)È(14) above imply that B ] (B0 x/l
x
)yü ,

and In other words,J ] (B0/lx)zü , P] P0[ (B02/8n)(x2/l
x
2).

the null deforms to a classical current sheet. This trend is
clearly evident in Figure 4.

From our investigations of single dipole Ðelds
(Roumeliotis et al. 1994 ; Sturrock et al. 1995), we expect
that at large shear the red and blue Ðeld lines exponentially
expand outward with increasing shear, and consequently
the current sheet thins out exponentially fast. This implies
that reconnection must eventually begin to occur here, and
once this reconnection starts it should accelerate. Our simu-
lation shows convincing evidence for this type of evolution.
There is no sign of reconnection at a shear of 3n/8 (Fig. 4c).
We let the Ðeld relax for an additional 30,000 s after this
shearing phase and saw no change in the Ðeld structure ;
hence the Ðeld in Figure 4c is also a true equilibrium. At a
shear of n/2, however, the current structure at the null
becomes only a few grid cells wide and reconnection begins.
For example, in Figure 4d some of the red and blue lines
clearly have reconnected and joined the green Ñux system.
The simulation could Ðnd no equilibrium for this shear.
When we tried to let the system relax by continuing the
simulation beyond the shearing phase, the reconnection
became progressively stronger with magnetic islands
appearing at the interface between the red and blue systems.
The velocities there became very large and the density
plummeted, halting the simulation.

Although our code could not simulate the actual erup-
tion, it did prove the key result that the energy of the
sheared MHD Ðeld greatly exceeds In Figure 3 weEmin.compare the magnetic energies as a function of shear for the

force-free and MHD solutions. One may question the valid-
ity of such a comparison because the MHD simulation also
includes the e†ects of the plasma energy ; however, the
change in plasma thermal energy during the whole shearing
phase (before appreciable reconnection) was less than 10%
of the magnetic energy change. It is evident from Figure 3
that the MHD solution energy exceeds even for a shearEminof n/4, while the free energy of the MHD solution is approx-
imately twice that of for a shear of 3n/8. Therefore,Eminthere is no way for the system to evolve to its minimum
energy state except by transferring this excess energy to the
plasma; i.e., by a violent eruption.

4. DISCUSSION

The most important result of the MHD simulation is
that, contrary to many other calculations, current sheets do
not form at the separatrix until late in the shearing. There
are two reasons for this result. First, no shear is applied at
the separatrix. This is the main di†erence between this
simulation and other simulations, including our own (see,
e.g., Karpen et al. 1996 ; Karpen, Antiochos, & DeVore
1998). If a shear were to be applied at the separatrix of our
conÐguration, then a discontinuous would be createdBÕowing to the discontinuity in relative footpoint positions,
and a current sheet would immediately appear just as in the
previous simulations. But we apply a shear only near the
neutral line, far from the separatrix. In fact, the Ðeld outside
the shear region should always be nearly current-free for
our 2.5-dimensional system since a quasi-static force-free
approximation should be valid everywhere except near the
null, and an unsheared 2.5-dimensional force-free Ðeld must
be potential. This is exactly what our simulation Ðnds ; the
current is completely negligible except in the shear region
and in the high-b region around the null.

Second, discontinuities do not appear at the null itself
because we include in our model a Ðnite plasma pressure so
that the system is far from force-free near the null. In order
to calculate the evolution of the null in the Ðrst place, the
plasma pressure and dynamics must be fully included.
Without the plasma the null could not even change its posi-
tion. The null moves outward only because stress is trans-
mitted from the Ðeld to the plasma in the low-b region and
imparts momentum to the plasma, which then moves the
Ðeld in the high-b region around the null. The plasma pres-
sure is also essential for a smooth equilibrium to form. As
the inner Ñux system expands outward it compresses the
plasma in the high-b region around the null, which
increases the plasma pressure there until force balance is
achieved, as in the simple analytic model described above. It
is only when the null region is squeezed down to the dissi-
pation length scale, which corresponds to a few grid points
in our numerical system, that signiÐcant reconnection
begins and equilibrium becomes impossible to maintain. Of
course, on the Sun the magnetic Reynolds number is very
large and the dissipation scale is many orders of magnitude
smaller than the global scale of the magnetic Ðeld.

An interesting implication of this discussion is that the
exact energy equation for the plasma must play a crucial
role in determining when eruption will occur. In the simula-
tion we assumed a simple adiabatic energy equation (8), but
radiation losses, thermal conduction, and ohmic heating
may all be important. If the plasma at the null cools as it
compresses, the width of the null region can decrease
rapidly to the dissipation scale. On the other hand, if the
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plasma heats, the null region resists compression and recon-
nection will be delayed. Hence we have the very interesting
situation that the dynamics of huge phenomena such as
CMEs may be controlled by detailed plasma processes that
occur in relatively tiny regions.

Another interesting property of our ““ magnetic
breakout ÏÏ model for CME initiation/Ñare triggering is that
it involves several observable features that could form the
basis for an e†ective prediction scheme. One feature is that
the shear is concentrated near the neutral line, which is in
agreement with observations (Schmieder et al. 1996) and
with our theory for prominence formation (Antiochos et al.
1994). Note that the shear responsible for eruptions cannot
be due to di†erential rotation since that would prefer-
entially shear long, high-lying Ñux rather than the short,
low-lying Ñux near the neutral line. Di†erential rotation
would produce the opposite shear proÐle from that shown
in Figure 2. The upcoming Solar-B mission should be able
to measure the magnetic shear at the photosphere with
great accuracy and to determine the relation, if any,
between shear distribution and eruptive activity.

Another feature of the model is that multiple Ñux systems
must be present in order for an eruption to occur. It is well
known that large eruptive Ñares only occur in complex
topologies ; d-spot regions in particular. It can be shown
that a d-spot has a three-dimensional magnetic topology of
a four-Ñux system, exactly analogous to the 2.5-dimensional
model discussed here (Antiochos 1998). We propose that
this explains why d-spots are so Ñare productive, whereas
bipolar spot regions are not. Note that this provides a clear
distinction between our breakout model and the usual
tether-cutting model (see, e.g., Sturrock 1989 ; Moore &
Roumeliotis 1992). Since the tether-cutting model involves
only a single arcade, it would predict that a strongly
sheared bipolar spot region is just as likely to Ñare as a
d-spot region.

CMEs also favor magnetic complexity. Both Mauna Loa
and LASCO observations indicate that CMEs are more
common in regions where the coronal Ðeld has a multipolar
structure rather than a simple bipolar structure (McAllister,
Hundhausen, & Burkepile 1995 ; Schwenn et al. 1996). In

addition, observations suggest that many CMEs involve
more than one neutral line and, therefore, more than one
Ñux region (Webb et al. 1997).

On the other hand, there are numerous examples of high-
latitude CMEs that appear to involve only a bipolar mag-
netic topology. It would seem that this type of event
contradicts the breakout model ; however, the high-latitude
CMEs not associated with active regions are invariably
slow, with height-time proÐles similar to that of the slow
solar wind rather than Ñare-associated ejection (see, e.g.,
Sheeley et al. 1997). We propose that this type of CME
should not be considered a coronal mass ejection but
merely a coronal mass expansion. The key point is that if
the magnetic Ðeld expands slowly outward because of shear
while the plasma maintains its temperature due to coronal
heating, then at a sufficiently large height (a few solar radii)
the plasma will begin to dominate the Ðeld and expand
outward indeÐnitely, as predicted by the Parker solar wind
model. Most CMEs may be just this type of pressure-driven
expansion, but obviously this process cannot explain the
fast CMEs that appear in the coronagraph Ðeld of view with
velocities much faster than the wind, and may even slow
down as they travel upward from the low corona (Sheeley et
al. 1997). We propose that fast CMEs must be due to mag-
netic breakout, which most likely occurs in strong active
region Ðelds.

From the viewpoint of prediction, the most important
feature of our model is the reconnection that must occur
above the erupting arcade. This reconnection is not
expected to release much energy since most of the free mag-
netic energy is stored in the low-lying sheared Ðeld. Note
also that the reconnection occurs on long Ðeld lines far from
any neutral line. Therefore, it is unlikely to produce signiÐ-
cant heating or strong X-ray emission, but it may be detect-
able in radio/microwave emission from nonthermal
particles accelerated by this reconnection. We believe that
radio and microwave observations will provide the best test
of the magnetic breakout model for CME initiation.

This work has been supported in part by NASA and
ONR.
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